About polynomials of degree 3.

https://www.linkedin.com/groups/8313943/8313943-6398582250933411844 Find all polynomials P(x) of degree 3 such that for all negative real numbers x and y

 $P(x+y) \ge P(x) + P(y).$

Solution by Arkady Alt, San Jose, California, USA.

Let $P(x) = ax^3 - bx^2 + cx - d$. Then $P(x + y) \ge P(x) + P(y) \iff$

(1) $3axy(x+y) - 2bxy + d \ge 0$ for any $x, y \in (-\infty, 0)$.

To find necessary conditions for coefficients *a*, *b* and *d* we set x = y in inequality (1) and obtain inequality $6ax^3 - 2bx^2 + d \ge 0$ for any x < 0.

Hence,
$$d \ge \lim_{x \to 0^-} (-2bx^2 - 6ax^3) = 0$$
 and $a \le \lim_{x \to \infty^-} \frac{1}{6} \left(\frac{2b}{x} - \frac{d}{x^3} \right) = 0$. Thus,

$$d \ge 0$$
 and $a < 0$.

Since
$$2b \le 6ax + \frac{d}{x^2}$$
 for any $x < 0$ and by AM-GM Inequality
 $6ax + \frac{d}{x^2} = 2 \cdot |3ax| + \frac{d}{x^2} \ge 3\left(9a^2x^2 \cdot \frac{d}{x^2}\right)^{1/3} = 3(9a^2d)^{1/3}$ then $b \le \frac{3(9a^2d)^{1/3}}{2}$.
To complete the solution we will prove that inequality $3axy(x + y) - 2bxy + d \ge 0$
holds for any $x, y < 0$ if $d \ge 0$, $a < 0$ and $b \le \frac{3(9a^2d)^{1/3}}{2}$.
We have $3axy(x + y) - 2bxy + d \ge 0 \iff 3a(x + y) + \frac{d}{xy} \ge 2b$ and by AM-GM Inequality
 $3a(x + y) + \frac{d}{xy} = 3(-a)(-x + (-y)) + \frac{d}{xy} = 3|a||x| + 3|a||y| + \frac{d}{|x| \cdot |y|} \ge$
 $3\left(3|a||x| \cdot 3|a||y| \cdot \frac{d}{|x| \cdot |y|}\right)^{1/3} = 3(9a^2d)^{1/3} \ge 2b$.
Thus, polynomial $P(x) = ax^3 - bx^2 + cx - d$ satisfies $P(x + y) \ge P(x) + P(y)$ for any $x, y < 0$
if and only if $a < 0, d \ge 0, b \le \frac{3(9a^2d)^{1/3}}{2}$ (c can be any real).